
Microprocessors and
Microcontrollers

(EE-231)

Objective

• Interrupts Programming in C
 In Proteus
 On 8051 development board

Interrupt

• An interrupt is an external or internal event that interrupts
the microcontroller to inform it that a device needs its service.

• Difference b/w interrupt and polling?
• A very familiar example of polling

– while(TI==0);
– while(TF1==0);

• This way (by interrupt) microcontroller can do multiple
tasks and handle multiple devices.

• It can also choose which device to serve which not to serve
by masking.

Interrupt Service Routine

• When an interrupt is invoked, the microcontroller runs the
interrupt service routine

• For every interrupt, there is a fixed location in memory that
holds the address of its ISR

• The group of memory locations set aside to hold the
addresses of ISRs is called interrupt vector table (IVT)

Steps in Executing an Interrupt

• Upon activation of an interrupt, the microcontroller goes through the following
steps

1. It finishes the instruction it is executing and saves the address of the next
instruction (PC) on the stack

2. It also saves the current status of all the interrupts internally
3. It jumps to a fixed location in memory, called the interrupt vector table, that holds

the address of the ISR
4. The microcontroller gets the address of the ISR from the interrupt vector table and

jumps to it
5. It starts to execute the ISR until it reaches the last instruction of the subroutine

which is RETI (return from interrupt)
6. Upon executing the RETI instruction, the microcontroller returns to the place

where it was interrupted
7. First, it gets the program counter (PC) address from the stack by popping the top

two bytes of the stack into the PC
8. Then it starts to execute from that address

Interrupts in 8051

• The 8051 has 6 interrupts given as below:
• i)Reset ii)Timer0 iii)Timer1 iv)External0 v)External1 vi)Serial
• Reset – power-up reset
• Two interrupts are set aside for the timers: one for timer 0 and one for timer 1
• Two interrupts are set aside for hardware external interrupts:P3.2 and P3.3 are for

the external hardware interrupts INT0 (or EX1), and INT1 (or EX2)
• Serial communication has a single interrupt for both receive (RI=1) and transfer

(TI=1)

IE Register

• Upon reset, all interrupts are disabled (masked), meaning that none will be
responded to by the microcontroller if they are activated

• The interrupts must be enabled by software using IE (Interrupt Enable) Register.
It is bit addressable.

EA Enable All

ET2 Enable Timer 2

ET1 Enable Timer 1

ES Enable Serial

EX1 Enable External 1

ET0 Enable Timer 0

EX0 Enable External 0

Interrupt Programming in C

• In C Programming, we don’t need to worry about vector address.
• The compiler have a unique number for each interrupt

• We activate the interrupt in the main program and we write its ISR as a function of
C.

• For example for a timer interrupt ISR, we make a function as below
• void my_ISR (void) interrupt 1 {
• ///// Function body }

Keyword

Timer Interrupt

• If the timer interrupt in the IE register is enabled, whenever the timer rolls over, TF
is raised, and the microcontroller is interrupted &

• Jumps to the interrupt vector table to service the ISR
• In this way, the microcontroller can do other until it is notified that the timer has

rolled over
• No need to continuously monitor i.e. while(TFX==0);

• void timer_one (void) interrupt 3 {

• void timer_zero (void) interrupt 1 {

Timer Interrupt

We make the
controller copy P1.7 to
P1.0 continuously.
While for the square
wave we use
interrupt. i.e. every
100 us we generate an
interrupt to request
our controller to
toggle the P2.5. After
toggling it, controller
goes back to its
regular job i.e.
copying P1.7 to P1.0

Making this
function an ISR

EA -- ET2 ES ET1 EX1 ET0 EX0

Serial Interrupt

• In the 8051 there is only one interrupt set aside for serial communication
• If enabled, this interrupt occurs whenever either of TI or RI flag is raised i.e. =1.
• In that ISR we must examine the TI and RI flags to see which one caused the

interrupt and respond accordingly

• The serial interrupt is used mainly for receiving data

• void Serial_ISR (void) interrupt 4 {

Serial Interrupt

Example:
Write a C code to do the following.
1) Continuously Copy P0 to P1.
2) Receive data serially and send it to P2.

Viewing Interrupt Status in Keil

• In Keil debugger we can view the status of interrupt by going in to Peripheral menu
and selecting ‘interrupt’

• In the interrupt window, we can see status and assert manually any flag of the
interrupt.

Todays Task 1

• Implement this in Proteus and then on easy 8051 Kit.
• Using interrupt for both timer 0 and 1 generate 2.5 KHz

frequency at P2.0 and 3 KHz at P2.1. Also display a count from
0-9 at a seven segment connected to P1 using an appropriate
delay. (MSDelay(250); maybe….)

• Firs implement it on Proteus and Then on 8051 Kit.

Task Code

Proteus Simulation

Todays Task 2

• Implement this in Proteus and then on easy 8051 Kit.
• Generate a 2.5 KHz Square wave on P2.0.
• While simultaneously implement a seven segment based 0-F

up-down counter. Seven segment be connected with P1, will
count up if serial port receives ‘u’ and will count down if serial
port receives ‘d’. Use serial interrupt to do that.

Task Code

Proteus Simulation

