Microprocessors and

Microcontrollers
(EE-231)

Lab-11

Objective

 Interrupts Programming in C
» In Proteus
» 0On 8051 development board

Interrupt

An interrupt is an external or internal event that interrupts
the microcontroller to inform it that a device needs Its service.

Difference b/w interrupt and polling?
A very familiar example of polling
— while(TI==0);
— while(TF1==0);
This way (by interrupt) microcontroller can do multiple
tasks and handle multiple devices.

It can also choose which device to serve which not to serve
by masking.

Interrupt Service Routine

When an interrupt is invoked, the microcontroller runs the
Interrupt service routine

For every interrupt, there is a fixed location in memory that
holds the address of its ISR

The group of memory locations set aside to hold the
addresses of ISRs is called interrupt vector table (IVT)

Steps Iin Executing an Interrupt

Upon activation of an interrupt, the microcontroller goes through the following
steps

It finishes the instruction it is executing and saves the address of the next
instruction (PC) on the stack

It also saves the current status of all the interrupts internally

. Itjumps to a fixed location in memory, called the interrupt vector table, that holds
the address of the ISR

. The microcontroller gets the address of the ISR from the interrupt vector table and
jumps to it

It starts to execute the ISR until it reaches the last instruction of the subroutine
which is RETI (return from interrupt)

Upon executing the RETI instruction, the microcontroller returns to the place
where it was interrupted

First, it gets the program counter (PC) address from the stack by popping the top
two bytes of the stack into the PC

. Then it starts to execute from that address

Interrupts in 8051

The 8051 has 6 interrupts given as below:

DReset i) TimerO i) Timerl iv)ExternalO v)Externall vi)Serial

Reset — power-up reset

Two interrupts are set aside for the timers: one for timer 0 and one for timer 1

Two interrupts are set aside for hardware external interrupts:P3.2 and P3.3 are for
the external hardware interrupts INTO (or EX1), and INT1 (or EX2)

Serial communication has a single interrupt for both receive (RI=1) and transfer
(TI=1)

Interrupt vector table

Interrupt ROM Location Pin
(hex)

Reset 0000 9

External HW (INTO) 0003 P3.2 (12)

Timer 0 (TFO) 000B

External HW (INT1) 0013 P33 (13)

Timer 1 (TF1) 001B

Serial COM (RI and TI) 0023

IE Register

Upon reset, all interrupts are disabled (masked), meaning that none will be
responded to by the microcontroller if they are activated

The interrupts must be enabled by software using IE (Interrupt Enable) Register.
It is bit addressable.

IE (Interrupt Enable) Register

b7, DO
EA 12 ES ET1 | EX1 | ETO | EXO

for rest of the register to take effect
EA Enable All
ET2 Enable Timer 2
ET1 Enable Timer 1
ES Enable Serial
EX1 Enable External 1
ETO Enable Timer 0
EXO0 Enable External O

Interrupt Programming in C

* In C Programming, we don’t need to worry about vector address.
* The compiler have a unigue number for each interrupt

Interrupt Name Numbers
External Interrupt 0 (INTO) 0
Timer Interrupt O (TFO) il
External Interrupt 1 (INT1) 2
Timer Interrupt 1 (TF1) 3

4

5

Serial Communication (RI + TI)
Timer 2 (8052 only) (TF2)

* We activate the interrupt in the main program and we write its ISR as a function of

C. Keyword
« For example for a timer igterrupt ISR, we make a function as below

e void my_ISR (void) interrupt 1 {
o ///// Function body }

Timer Interrupt

If the timer interrupt in the IE register is enabled, whenever the timer rolls over, TF
is raised, and the microcontroller is interrupted &

Jumps to the interrupt vector table to service the ISR

In this way, the microcontroller can do other until it is notified that the timer has
rolled over

No need to continuously monitor i.e. while(TFX==0);

TFO Timer O Interrupt Vector TF1 Timer 1 Interrupt Vector

= 000BH = 001BH
Jumps to - Jumps to

void timer_one (void) interrupt 3 {

Timer Interrupt 1 (TF1) 3

void timer_zero (void) interrupt 1 {

Timer Interrupt O (TFO) 1

Timer Interrupt

Example 11-14
Write a C program that continuously gets a single bit of data from P1.7
and sends 1t to P1.0, while simultaneously creating a square wave of

200 ps period on pin P2.5. Use Timer 0 to create the square wave.
Assume that XTAL =11.0592 MHz.

Solution:

We will use timer 0 mode 2 (auto-reload). One half of the period 1s
100 ps. 100/1.085 ps =92, and THO = 256 - 92 = 164 or A4H

#include <reg51.h>

sbit SW =P1"7; Making this

sbit IND =P170; ¢/ function an ISR

sbit WAVE =P2"5;

void timerO (void) |interrupt 1] {
WAVE=~WAVE; //toggle pin

}

void main () {

We make the
controller copy P1.7 to
P1.0 continuously.
While for the square
wave we use
interrupt. i.e. every
100 us we generate an
interrupt to request
our controller to
toggle the P2.5. After
toggling it, controller
goes back to its
regular job i.e.
copying P1.7 to P1.0

SW=1; //make switch input
TMOD=0x02;
THO=0xA4; //THO=-92
IE=0x82; //enable interrupt for timer 0 <€
while (1) {
IND=SW; //send switch to LED

}
}

NS EEEAEIEIED

Serial Interrupt

In the 8051 there is only one interrupt set aside for serial communication
If enabled, this interrupt occurs whenever either of Tl or Rl flag is raised i.e. =1.

In that ISR we must examine the Tl and RI flags to see which one caused the
interrupt and respond accordingly

g |
) 0023H
RT

The serial interrupt is used mainly for receiving data

Serial Communication (RI + TI) 4

void Serial ISR (void) interrupt 4 {

Serial Interrupt

Example:

Write a C code to do the following.

1) Continuously Copy PO to P1.

2) Receive data serially and send it to P2.

fFinclude <regS5Sl.h>
[[lvoid serial ISR(void) interrupt 4 {
P2=SBUF;
~-RI=0 }
[<]lvoid main (void) {
unsigned char mybyte;
PO=0xFF;// Make PO an input
TMOD=0x20;
TH1=-3; // 9600 baudrate
EA=1; // Enable all

ES=1; // Enable serial interrupt

TR1=1; //Start Timer 1 for baudrate generation
while (1)

mybyte=P0;

Pl=mybyte;
}

Viewing Interrupt Status in Kell

In Keil debugger we can view the status of interrupt by going in to Peripheral menu
and selecting ‘interrupt’

Flash Debug IPeripherals | Tools SVCS Window

3| ‘ v Interrupt i ‘ = =
O-Ports »
| *{}‘ ‘E Serialo s @ v
2 [B Disassemk !
(void)

Timer »
— I 5 {

In the interrupt window, we can see status and assert manually any flag of the
interrupt. ,

Interrupt System 3

- b
i |

Int Source l Vectorl Mode I Req l Ena I

o

P3.2/Int0 0003H 0 0 0 0
Timer 0 000BH 0 0 0
P3.3/Int1 0013H 0 0 0 0
Timer 1 001BH 0 0 0
0 0 0
0 0 0

Serial Rev. 0023H
Serial Xmit. 0023H

Selected Intermupt
[~ EA [~ I [IE1 [~ EX1 Pri.: |0

Todays Task 1

Implement this in Proteus and then on easy 8051 Kit.

Using interrupt for both timer 0 and 1 generate 2.5 KHz
frequency at P2.0 and 3 KHz at P2.1. Also display a count from
0-9 at a seven segment connected to P1 using an appropriate
delay. (MSDelay(250); maybe....)

Firs implement it on Proteus and Then on 8051 Kit.

Task Code

ﬁ. #include<reg51.h>
2 sbit wavel=P2°0;
3 sbit wave2=P2"1;
4 void Timer 0 ISR() interrupt 1
R
6 wavel=~wavel;
7}
8
9 void Timerl 1 ISR(void) interrupt 3
10 {
11 wave2=~wave2;
1521 }
i3
14 void MSDelay (unsigned int):;
15 void main(void)
16 {
17 unsigned char x;
18 unsigned char Lookup[]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,
19 O0x82,0xF8,0x80,0x90,0xA0,0x83,0xA7,0xAl1,0x84,0x8E};
20 TMOD=0x22;
21 THO=-184; // For 2.5 KHz
22 TH1=-153; // For 3 KHz
23 EA=1; //Enable 2ll
24 ET0=1; //Enable Timer 0 Interrupt
25 ET1=1; //Enable Timer 1 Interrupt
26 TRO=1; // Start Timer O
27 TR1=1; // Start Timer 1
28 while (1)

29 {
30 for(x=0:x<10;x++)
31 {

32 Pl=Lookup[x]:
33 MSDelay(5):
34 }

35})

Proteus Simulation

|

Fiy

tope

& 7| RESISTOR ARRAY

mmmmhl_ r]j:i{j}Lm"

Iaqélﬂ.-- -.:...-.

]

= L}

24
- -
—_ 0

=10

=11

"2z

(317

s

ERF)

Todays Task 2

Implement this in Proteus and then on easy 8051 Kit.
Generate a 2.5 KHz Square wave on P2.0.

While simultaneously implement a seven segment based 0-F
up-down counter. Seven segment be connected with P1, will
count up If serial port receives ‘u’ and will count down Iif serial
port receives ‘d’. Use serial interrupt to do that.

Task Code

r#lnclude<:eg51.h>
sbit wave=P2°0;

bit dir;
void Timer 0 ISR() interrupt 1
H {

wave=~wave;
=}
void Serial ISR(void) interrupt 4
-] {
unsigned char y;
y=SBUF;
RI=0;
if(y="u')
dir=1;
else if(y=='4d')
dir=0;

2}

void MSDelay (unsigned int):;

void main(void)

] {

unsigned char x;

Hlunsigned char Lookup[]={0xC0,0xF9,0xA4,0xB0,0x%99,0x92,
rOx82,0xF8,0x80,0x90,0xA0,0x83,0xA7,0xAl1,0x84,0x8E};
TMOD=0x22;

SCON=0x50;

THO=-184; // For 2.5 KHz

TH1=-3; // For 9600 baudrate

EA=1; //Enable All

ETO0=1; //Enable Timer 0 Interrupt

ES=1; //Enable Serial Interrupt

TRO=1; // Start Timer O

TR1=1; // Start Timer 1 for Baudrate Generation y

fwhile (1)
 {
if (dir==1)
X++;
else
Xy
Pl=Lookup[x&0x0F]:
MSDelay(250);
B ¥
)
void MSDelay (unsigned int itime)
ik
unsigned int x,y;
for (x=0;x<itime;x++)
for (v=0;y<114;y++);

e/

Proteus Simulation

==

|1

= = t

Digital Oscilloscope

53| [OR ARRAY

Channel C

Virtual Terminal

udurtdu

